Collaborative Filtering for people-to-people recommendation in online dating: Data analysis and user trial
نویسندگان
چکیده
A common perception is that online dating systems “match” people on the basis of profiles containing demographic and psychographic information and/or user interests. In contrast, product recommender systems are typically based on Collaborative Filtering, suggesting purchases not based on “content” but on the purchases of “similar” users. In this paper, we study Collaborative Filtering for people-to-people recommendation in online dating, comparing this approach to a baseline Profile Matching method. Initial data analysis highlights the problem of over-recommending popular users, a standard problem for Collaborative Filtering applied to product recommendation, but more acute in people-to-people recommendation. We address this problem with a two-stage recommender process that employs a Decision Tree derived from interactions data as a “critic” to re-rank candidates generated by Collaborative Filtering. Our baseline Profile Matching method dynamically chooses, for each user, attributes that contribute most significantly to successful interactions with candidates having the best matching attribute value. The key evaluation metric is success rate improvement, the increase in the chance of a user having a successful interaction when acting on recommendations. Our methods were first evaluated on historical data from a large online dating site and then trialled live over a 9 week period providing recommendations via e-mail to a large number of users. The trial confirmed the consistency of the analysis on historical data and the ability of our Collaborative Filtering method to generate suitable candidates over an extended period. Moreover, the Collaborative Filtering method gives a higher success rate improvement than Profile Matching. & 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملUse of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems
One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...
متن کاملLearning to Make Social Recommendations: A Model-Based Approach
Social recommendation, predicting people who match other people for friendship or as potential partners in life or work, has recently become an important task in many social networking sites. Traditional content-based and collaborative filtering methods are not sufficient for people-to-people recommendation because a good match depends on the preferences of both sides. We proposed a framework f...
متن کاملIntelligent Approach for Attracting Churning Customers in Banking Industry Based on Collaborative Filtering
During the last years, increased competition among banks has caused many developments in banking experiences and technology, while leading to even more churning customers due to their desire of having the best services. Therefore, it is an extremely significant issue for the banks to identify churning customers and attract them to the banking system again. In order to tackle this issue, this pa...
متن کاملProCF: Probabilistic Collaborative Filtering for Reciprocal Recommendation
Similarity in people to people (P2P) recommendation in social networks is not symmetric, where both entities of a relationship are involved in the reciprocal process of determining the success of the relationship. The widely used memory-based collaborative filtering (CF) has advantages of effectiveness and efficiency in traditional item to people recommendation. However, the critical step of co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Hum.-Comput. Stud.
دوره 76 شماره
صفحات -
تاریخ انتشار 2015